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In the present  study using the Newtonian approximation [1] we obtain an analytical solution to 
the problem of flow of a steady, uniform, hypersonic,  nonviscous, radiating gas past  a sphere. 
The three-d imens iona l  radia t ive- loss  approximation is used. A distribution is found for the 
gasdynamic pa rame te r s  in the shock layer,  the withdrawal of the shock wave and the radiant 
thermal  flux to the surface of the sphere. The Newtonian approximation was used ear l ie r  in 
[2, 3] to analyze a gas flow with radiation near the cr i t ical  llne. In [2] the radiation field was 
considered in the differential approximation, with the optical absorption coefficient being 
assumed constant. In [3] the integrodifferent ial  energy equation with account of radiation was 
solved numerical ly  for a gray gas. In [4-7] the problem of the flow of a nonviscous, nonheat- 
conducting gas behind a shock wave with account of radiation was solved numerical ly.  To 
calculate the radiation field in [4, 7] the three-d imensional  rad ia t ive- loss  approximation was 
used; in [5, 6] the self -absorpt ion of the gas was taken into account. A comparison of the 
equations obtained in the present  study for radiant flow f rom radiating air  to a sphere with the 
numerical  calculations [4-7] shows them to have sat isfactory accuracy.  

We consider  the hypersonic flow of a nonviscous, nonheat-conducting radiating gas past  a spher i -  I. 

ca l body of radius R. The sys tem of equations that descr ibes  the gas flow between the withdrawing shock 
wave and the sphere, writ ten in a spherical  coordinate sys tem fixed in the body, is given in [5]. This sys -  
tem of equations is solved with boundary conditions on the oblique discontinuity and with the condition that 
there  is no flow on the body. It is fur ther  assumed that the gas is ideal, the shock layer  is thin, and the 
conditions of the hypersonic  approximation are  satisfied, so that 

p ~ p ~ V ~  ~, h ~ V ~ / 2  

where P~o Is p ressure ,  P~o is density, ha is enthalpy, and V~ is velocity of the incident flow. 

The gas satisfies the equation of state 

P (i.i) h ~--Ip 

where 7 is the effective ratio of specific heats behind a compaction discontinuity, p is pressure, h is 
enthalpy, and p is density. 

To solve the problem we expand quantities in the small parameter ~, equal to the ratio of the gas 
density before and after the shock wave (Newtonian approximation) [i] 

( r - - R ) / R = ~ y o + . . . ,  u = V ~ [ u o + O ( ~ ) ] ,  v=V~[~vo-~-O(~2)] (1.2) 

p = o~voo ~ [po -~- o (~)1, p = ~ -  leo + o (~)1, h = [ho + 0 (s)] 

(2 = ~>~ \ 2cp / [0o + o (z)l 
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H e r e  r is r ad ia l  coord ina te ,  u is tangent ia l  ve loc i ty  component ,  v is n o r m a l  ve loc i ty  component ,  p is 
p r e s s u r e ,  h is enthalpy,  p is densi ty ,  e is the S t e f a n - B o l t z m a n n  cons tan t ,R  is the  rad ius  of the  body, Q = 
dlv qR is the d ive rgence  of the rad ian t  flow, r = ( 7 - 1 ) / ( y  +1 ), and Cp is the ef fec t ive  spec i f i c  heat  s t  
cons tan t  p r e s s u r e .  

The  s u b s c r i p t  oo ind ica tes  quant i t ies  in the incident  flow, the subsc r ip t  S ind ica tes  quant i t ies  on the 
shock  wave,  and the s u b s c r i p t  0 ind ica tes  d imens ion l e s s  quant i t ies .  

Equat ions  (1.2) a r e  subs t i tu ted  into the  equat ions of  g a s d y a a m i e s ,  a f t e r  which we obtain fo r  the f i r s t  
t e r m s  of the  expans ion  (the s u b s c r i p t  0 is dropped) 

-  (sinOpu) = o, (1.3) 
Ou __ Ou Oh Oh 

OV - ~  -~ Ou ~ = O, Pv b~ + Pu ~ = - F Q 

h 2v p r -  2~ ( v |  

H e r e  F is the r ad ia t ion  p a r a m e t e r  [5] and 0 is the angu la r  coordina te .  

To  the s a m e  approx ima t ion  the  r e l a t i ons  on the shock  wave  take  the f o r m  

Us --  sin 0, Vs = -- cos 0, Ps = co s2 O, hs = cos ~ O (1.4) 

The  condit ion of nonflow of the  body takes  the  f o r m  

v (y  = 0 )  = 0 ( 1 . 5 )  

We d e t e r m i n e  the d i m e n s i o n l e s s  s t r e a m  funct ion 

d ~  = pu sin 0 dy - -  pv sin 0 dO (1.6) 

F u r t h e r ,  in s y s t e m  (1.3) we t r a n s f o r m  to the v a r i a b l e s  q, =0.  Then  in t he se  v a r i a b l e s  the s y s t e m  
(1.3) is wr i t t en  as  fol lows:  

(1.4). 
(1.4). 
f o r m  (in d imens iona l  form) [7-9] 

aulO 0 = 0 (1.7) 

ap/OT = u/sin e (1.5) 

Oy/a~ = t/p~ ~in 0 (1.9) 

v = u Oy/O0 (1.10) 

pu Oh~nO = - -F  Q (1.11) 

On the body we a s s u m e  the d imens ion l e s s  s t r e a m  function ~ =0, on the shock  wave ~ =~S(0) = 1 / 2  

sin 2 0. 

The  bounda ry  condi t ions  (1.4) in new v a r i a b l e s  have the  s a m e  fo rm,  but they must  be t aken  fo r  

= % ( 0 ) .  

2. The  so lu t ion  of  Eq. (1.7) with boundary  condi t ions  (1.4) has  the  f o r m  

= V ~  (2.1) 

Tak ing  account  of this  solut ion,  the  e x p r e s s i o n  for  the p r e s s u r e  f r o m  Eq. (1.8) with account  of (1.4) 
t akes  the f o r m  

i - 2 ( 2 ~ )  3/~ 
p(tF, 0) = c o s 2 0 -  T S m  0-~ 3sin0 (2.2) 

For  the  g e o m e t r i c a l  coord ina te  we obtain the  e x p r e s s i o n  
w 

i ! a~t " (2.3) 
y(~ , ,0 )  = ~ p V~-~ 

Equat ion (1.10) d e t e r m i n e s  the  n o r m a l  ve loc i ty  component ,  which sa t i s f i e s  the boundary  condit ion 
Fo r  the  f inal  solut ion of the g a s d y a a m i c  p r o b l e m  we must  solve Eq. (1.11) with boundary  condi t ion 
In the t h r e e - d i m e n s i o n a l  r a d i a t i v e - l o s s  app rox ima t ion  the d ive rgence  of the rad iant  flow has the 

Q = 2 ~ T 4  (2.4) 
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Here ~ is the average Planck absorption coefficient. 
that In a definite range of p r e s s u r e s  and t empera tu res  the Planck coefficient can be approximated as 

(p,  T) = A p T  '~ (2.5) 

where A and n are  constants of the approximation, p is p res su re ,  and T is tempera ture .  

Using Eqs. (2.4) and (2.5) we obtain an equation for the enthalpy 

Oh bh n+a 
u ~ = -  (,,+4) (2.6) 

Analysis of tabular  data [8-10] for  air shows 

with the boundary condition 

h (~F = ~Fs (0)) = cos ~ 0 (2.7) 

where the dimensionless pa r ame te r  b Is the product of the charac te r i s t i c  optical thickness of the shock 
layer  and the radiation pa rame te r  F 

/ V 2  \ n  
b = 2Ap~cV~ ~ ~@}_~p / eR ~ ~ + t r (n @ 4) (2.8) 

In [4] this p a r a m e t e r  is called the pa rame te r  of energy loss by radiation. The so lu t ionfor the  enthalpy 
has the form 

f t bO b arc sin V'2-~- ~'[~ 
h('r'0)=~ii--2~F)~+4 @ Y2-~ V ~  a=(nq-4) -~  (2.9) 

Equation (2.9) enables us to find the density 0 ,  then the geometr ica l  coordinate y (~, 0) f rom Eq. (2.3) 
and the normal  velocity component v (,I~, 0) f rom Eq. (1.10). 

Thus, we have determined all the pa rame te r s  of the gas flow in the shock layer.  

3. In most  of the studies for the calculation of the radiant the rmal  flux on a body under the assump-  
tion that the shock layer  is thin in compar ison with the radius of the body, an equation for the plane layer  
with thickness equal to the distance that the shock wave has withdrawn is used. If it is assumed that the 
degree of blackness of the body equals unity, and the sel f - radiat ion of a comparat ively  cold surface of a 
body can be neglected, then the radiant flux on the body f rom the gas layer  of each configuration is ex- 
p re s sed  by the equation of [10]. F rom this general  expression,  assuming that the shock layer  Is thin and 
that the re  is a th ree-d imens iona l  radiative loss,  we can obtain the following expression for the radial  
radiant flux (in dimensional form) at the point determined by the coordinate 0 on the surface  of the body 

v~(0) 
qR(O) = eR ~S d g v ~ ( p , T )  z T  ~ (3.1) 

o 

where 0 is the angle determining the observation point on the body, YS (0) is the withdrawal of the shock 
wave. 

2qp, (0) 

For  angles that satisfy the condition 

Equation (3.1) can be rewri t ten in dimensionless form, using (2.8) and (2.9) 

1 m 

p o o V  3 - =: 2(n r 4 )  (t -- t2 sin20)-('~+a) + b(0-- arcsin (t s i n 0 ) ) t  sin 0 dt  

m = - -  (n + 5 ) / n  + 4 (3.2) 

This expression implies a number of special  cases.  For  b<< 1, when the radiation can be considered 
as a per turbat ion super imposed on an adiabatic gas flow, Eq. (3.2) yields 

1 

- -  2 (,~ ~ d t  [t  - -  t 2 sin 2 el "+5 (3.3) 

sin 0 < V3-/V+ 5) 

the integral  in (3.3) is calculated, retaining two t e r m s  in the binomial expansion of the integrand. Approxi-  
mating the resul t  obtained with the same accuracy,  we obtain 

2q R (0) b 
p~V3 -- 2 (n + 4) (cos 0)~, ~ (~+~) (3.4) 
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F r o m  this equation we see that the radiant flux increases  in proport ion to the radius of the body (or 
the thickness of the compressed  layer) and decreases  quite rapidly with increasing angle. The rat io of flow 
(3.4) to the flow at the cr i t ical  point (0 = 0) is independent of the p a r a m e t e r  b and, hence, the radius of the 
body. These  conclusions are  confirmed by numerical  calculations [4-6]. An approximation of the tabular  
data for  a ir  [9, 10] for 0.1 -< p -< 1 a tm,4000~  < T -  < l l000~ gives the value n ~8.0.  Equation (3.4) for  n=8 
leads to the angular dependence 

qa (0) ~ (cos 0) s.~7 

Numerical  calculations of the radiant flux for air  for an incident-flow velocity Vr =10 km/sec ,  when 
the gas can be assumed to be weakly radiating, leads to the dependence 

q~ (0) - -  (cos 0)10.7 

In the other limiting case, when the gas is strongly radiating (b >> 1), an asymptotic  calculation of the 
integral  in (3.2) leads to the following equation for the flow: 

2qa(0)/p~V~ a = cos 30/2 (3.5) 

F r o m  this equation we see that for  a s trongly radiating gas the limiting radiant flux on a body equals 
half the kinetic flux of the incident gas (the other half is lost by i r radiat ion to the side of the shock wave). 

Numerical  calculations [6] for  Vr = 16 k m / s e c  lead to the dependence qR (0) ~ cosS'~ which is 
close to the limiting express ion (3.5). 

F rom (3.5) it follows that for  s t rong radiative loss,  the radiant flux is independent of the radius of the 
body. This resul t  is confirmed by numerica l  calculation [5] for the cr i t ical  point, where it is shown that 
the rat io qR (R)/qR (R =3 m) approaches a constant limit for R > 1 m. 

_ In both limiting cases (3.4) arid (3.5) the rat io of the radiant flux for 0 ~ 0 to the flux at the c r i t ica l  
point is independent of the p a r a m e t e r  b and, hence, the radius of the body. The lack of dependence of this 
rat io on the radius is conf i rmed by numerical  calculations [4, 6]. 

4. F r o m  the relat ions (2.3) and (2.9) given above, we can obtain the dimensionless  withdrawal of the 
shock wave Ys(0) as a function of the angle 0 and the pa rame te r  b 

! [ t . ~ t 3 I-I ( I b(O--arcsin(tsinO~)~-l/(n+4) 
gs(O) ~ + t  dt cos20 --~-sln 0 +-~-sin20 tsinO "j - -  2--T-- - (i - t~ sin~ o) ~+a + (4 .  i )  

For  a weakly radiating gas for  b<< 1, Eq. (4.1) implies 

T@f ~ ~dt(l-'t zsin 20) 
vs(0)= 2~ ~ [cos~0---:-~/~s~-,.)] (4.2) 

Calculation of the integral  in (4.2) gives 

ys (0) ~- ~ 3 + t)2 { ~ [ + l n  (" a2--a+t j  + 
i ( 2--a t ) ]  COSr } 

+ - - ~  arc tg ~ + arc tg - - ~ -  -- In cos~ 0 -- 1/a sitx "~ 0 

where a 3 =3 c o t 2 0 -  1. 

For  angles 0 < zr/6, Eq. (4.2) gives, with accuracy  up to 12%, 

Ys (0) = ~ + l 1 
2T co# O 

(~.3) 

(4.4) 

Thus, for a weakly radiating gas, the withdrawal naturally is independent of the pa r ame te r  b, i.e., in- 
dependent of the radiation, and increases  with increasing angle 0. 

For  a s trongly radiat ing gas with b >> 1 an asymptot ic  calculation of the integral in (4.1) for angles 
0 < ~r/6 gives 

ys(0)= ~ + l  n+4  b ~ 
2"r n + 3 cos~ 0 (4.5) 
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The withdrawal  of the shock wave in dimensional  f o r m  

r s  (0) - -  R = e B y s  (0) (4.6) 

where  r S =rs(0) is the equation that  desc r ibes  the fo rm of the shock wave. F r o m  Eqs. (4.3), (4.5), and (4.6) 
it follows that  for  a weakly radia t ing gas the withdrawal  i n c r e a s e s  ~ R, and for  a s t rongly radiat ing gas 
~R(n+3)/(n+4),  and d e c r e a s e s  with inc reas ing  veloci ty  Voo. This  is conf i rmed by an analys is  of the numer i -  
cal s tudies [5, 7]. It is in teres t ing  to note that  Eqs. (4.4) and (4.5) imply the s ame  dependence of the wi th-  
drawal  on angle 0 for  s t rongly and weakly radiat ing gas,  at l eas t  for  angles 0 < u/6. The ra t io  of the with- 
drawal  for  0 # 0 to the withdrawal  at the c r i t i ca l  line 0 =0 in both l imit ing cases  is independent of p a r a m -  
e te r  b, which is re la ted  to the radiat ion.  

Equations (4.1) and (4.5) imply that  the withdrawal of the shock wave d e c r e a s e s  with increas ing  p a r a m -  
e t e r  of ene rgy  loss  by radia t ion b. Such a dec rea se  in wi thdrawal  of the shock wave for  a t h r e e - d i m e n -  
sional rad ia t ive  loss  was noted in the calcula t ions  of [7]. 

In conclusion the author  thanks G. A. T i r sk i i  and I~. A. Gershbein  for  d i scuss ion  and valuable  r e m a r k s .  
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