DISTRIBUTION OF RADIANT THERMAL FLUX

OVER THE SURFACE OF A SPHERE FOR HYPERSONIC
FLOW OF A NONVISCOUS RADIATING GAS PAST

THE SPHERE
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In the present study using the Newtonian approximation [1] we obtain an analytical solution to
the problem of flow of a steady, uniform, hypersonic, nonviscous, radiating gas past a sphere.
The three-dimensional radiative-loss approximation is used. A distribution is found for the
gasdynamic parameters in the shock layer, the withdrawal of the shock wave and the radiant
thermal flux to the surface of the sphere. The Newtonian approximation was used earlier in
[2, 3] to analyze a gas flow with radiation near the critical line, In [2] the radiation field was
considered in the differential approximation, with the optical absorption coefficient belng
assumed constant. In [3] the integrodifferential energy equation with account of radiation was
solved numerically for a gray gas. In [4-7] the problem of the flow of a nonviscous, nonheat~
conducting gas behind a shock wave with account of radiation was solved numerically. To
calculate the radiation field in [4, 7] the three-dimensional radiative-loss approximation was
used; in [5, 6] the self-absorption of the gas was taken into account. A comparison of the
equations obtained in the present study for radiant flow from radiating air to a sphere with the
numerical calculations [4-7} shows them to have satisfactory accuracy.

1. We consider the hypersonic flow of a nonviscous, nonheat-conducting radiating gas past a spheri-
cal body of radius R. The system of equations that describes the gas flow between the withdrawlng shock
wave and the sphere, written in a spherical coordinate system fixed in the body, is given in {5]. This sys-
tem of equations is solved with boundary conditions on the oblique discontinuity and with the condition that
there is no flow on the body. It is further assumed that the gas is ideal, the shock layer is thin, and the
conditions of the hypersonic approximation are satisfied, so that

pm <pmvmzx h’co <Vuo2 / 2
where p,, is pressure, p_ is density, he is enthalpy, and Ve is velocity of the incident flow.

The gas satisfies the equation of state
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where vy is the effective ratio of specific heats behind a compaction discontinuity, p is pressure, h is
enthalpy, and p is density.

To solve the problem we expand quantities in the small parameter &, equal to the ratio of the gas
density before and after the shock wave (Newtonian approximation) [1]
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Here r is radial coordinate, u is tangential velocity component, v is normal velocity component, p is
pressure, h is enthalpy, p is density, o is the Stefan—Boltzmann constant,R is the radius of the body, Q =
div qp 1s the divergence of the radiant flow, € =(y—1}/(y +1), and Cp is the effective specific heat at
constant pressure.

The subscript « indicates quantities in the incident flow, the subscript S indicates quantities on the
shock wave, and the subscript 0 indicates dimensionless quantities.

Equations (1.2) are substituted into the equations of gasdynamics, after which we obtain for the first
terms of the expansion (the subscript 0 is dropped)
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Here T isthe radiation parameter [5] and ¢ is the angular coordinate.
To the same approximation the relations on the shock wave take the form ,
ug—sin@, wvg= —cosh, pg=rcos’O, hg=cos®0 (1.4)
The condition of nonflow of the body takes the form
v(y=0)=20 | (1.5)
We determine the dimensionless stream function
d+y = pu sin 6 dy — pvsin 6 dO (1.6)

Further, in system (1.3) we transform to the variables ¥ =0. Then in these variables the system
(1.3) is written as follows:

Auld 8 =0 (1.7)
dp/d¥ = u/sin 0 (1.8)
oy/d¥Y = 1/pusin O 1.9
v = u dy/9o (1.10)
pu k198 = —I' Q (1.11)

On the body we assume the dimensionless stream function .¥ =0, on the shock wave ¥ = ¥g(9) =1/2
sin? 9.

The boundary conditions (1.4) in new variables have the same form, but they must be taken for
¥ =Ug(0). .

2. The solution of Eq. (1.7) with boundary conditions (1.4) has the form
w="V2F . (2.1)

Taking account of this solution, the expression for the pressure from Eq. (1.8) with account of (1.4)
takes the form

. 2"/
p(¥,0) = cos?0 — —%—smze—{—-ﬁ}g— (2.2)
For the geometrical coordinate we obtain the expression
' 1 ¢ av
y(¥,0 =45 S) Vi 2.3)

Equation (1.10) determines the normal velocity component, which satisfies the boundary condition
(1.4). For the final solution of the gasdynamic problem we must solve Eq. (1.11) with boundary condition
(1.4). In the three-dimensional radiative-loss approximation the divergence of the radiant flow has the
form (in dimensional form) [7-9]

Q = 2poT* (2.4)
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Here u is the average Planck absorption coefficient. Analysis of tabular data [8-10] for air shows
that in a definite range of pressures and temperatures the Planck coefficient can be approximated as

w(p, T) = ApT" {2.5)
where A and n are constants of the approximation, p is pressure, and T is temperature.

Using Eqgs. (2.4) and (2.5) we obtain an equation for the enthalpy

gh _ mA™®
LT T

(2.6)

with the boundary condition
(¥ = ¥s(8)) = cos*0 {2.7)

where the dimensionless parameter b is the product of the characteristic optical thickness of the shock
layer and the radiation parameter T

Vo2
b=2Apme2( = ) eR

%, I‘(n+ 4) (2.8)

In [4] this parameter is called the parameter of energy loss by radiation. The solution forthe enthalpy
has the form

N 1 b8 barcsin VI¥ | - -
L(T,6) = 1(1 7+ e S [ a=(td 2.9)

Equation (2.9) enables us to find the density p, then the geometrical coordinate y (¥, 9) from Eg. (2.3)
and the normal velocity component v (¥, 6) from Eq. (1.10).

Thus, we have determined all the parameters of the gas flow in the shock layer.

3. In most of the studies for the calculation of the radiant thermal flux on a body under the assump-
tion that the shock layer is thin in comparison with the radius of the body, an equation for the plane layer
with thickness equal to the distance that the shock wave has withdrawn is used. If it is assumed that the
degree of blackness of the body equals unity, and the self-radiation of a comparatively cold surface of a
body can be neglected, then the radiant flux on the body from the gas layer of each configuration is ex-
pressed by the equation of [10]. From this general expression, assuming that the shock layer is thin and
that there is a three-dimensional radiative loss, we can obtain the following expression for the radial
radiant flux (in dimensional form) at the point determined by the coordinate ¢ on the surface of the body

y(ﬁ)
qr (8) =¢eR 5 dyp(p,T) s 3.1

=}

where 0 is the angle determining the observation point on the body, ¥g (6) is the withdrawal of the shock
wave.

Equation (3.1) can be rewritten in dimensionless form, using (2.8) and (2.9)
1

29 ©) b 22 b (8 — arc sin (£ sin 8)) \
o —(n+4)
PV 24 5{(1 £ sin? )=+ 4 isin® | at

T

—(n+9)/n+4 (3.2)
This expression implies a number of special cases. For b<« 1, when the radiation can be considered
as a perturbation superimposed on an adiabatic gas flow, Eq. (3.2) yields

215 ©) PO .
bV T 2D (,Sdt (4 — & sin® 0] (3.3)

For angles that satisfy the condition
sin@ < V'3/(n + 5)

the integral in (3.3) is calculated, retaining two terms in the binomial expansion of the integrand. Approxi-
mating the result obtained with the same accuracy, we obtain
129, ©®) b

Vo T Ty s (3.4)
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From this equation we see that the radiant flux increases in proportion to the radius of the body (or
the thickness of the compressed layer) and decreases quite rapidly with increasing angle. The ratio of flow
{3.4) to the flow at the critical point (6 = 0) is independent of the parameter b and, hence, the radius of the
body. These conclusions are confirmed by numerical calculations [4~6]. An approximation of the tabular
data for air [9, 10] for 0.1 = p = 1atm,4000°K =T = 11000°K glves the value n ~8.0. Equation (3.4) for n=8
leads to the angular dependence

qr (0) ~ (cos 0)8-67

Numerical calculations of the radiant flux for air for an incident-flow velocity Vo =10 km/sec, when
the gas can be assumed to be weakly radiating, leads to the dependence

gr (6) ~ (cos )07

In the other limiting case, when the gas is strongly radiating (b > 1), an asymptotic calculation of the
integral in (3.2) leads to the following equation for the flow:

2¢r(8)/peV ° = c0s28/2 (3.5)

From this equation we see that for a strongly radiating gas the limiting radiant flux on a body equals
half the kinetic flux of the incident gas (the otber half is lost by irradiation to the side of the shock wave).

Numerical calculations [6] for V,, =16 km/sec lead to the dependence qp (8) ~ cos®%g, which is
close to the limiting expression (3.5).

From (3.5) it follows that for strong radiative loss, the radiant flux is independent of the radius of the
body. This result is confirmed by numerical calculation [5] for the critical point, where it is shown that
the ratio gqg (R)/qR (R =3 m) approaches a constant limit for R > 1 m.

_ In both limiting cases (3.4) and (3.5) the ratio of the radiant flux for ¢ # 0 to the flux at the critical
point is independent of the parameter b and, hence, the radius of the body. The lack of dependence of this
ratio on the radius is confirmed by numerical calculations [4, 6].

4, From the relations (2.3) and (2.9) given above, we can obtaln the dimensionless withdrawal of the
shock wave yg(0) as a function of the angle ¢ and the parameter b

“4.1)

1 -1 . . .
T4+1 1 . B, 1 b (@ — arc sin (¢ sin 6)) |-1/(n+4)

ys@) = —5 {a [6052 0 — g sin*0 4 i’ 9] { A —asmopd * 7sin0
0 .

For a weakly radlating gas for b<<1, Eq. {4.1) implies

T—I—i dt (1—tzsin26)
ys(0) = S [oos'0 — V351020 (L — )] (4.2)

Calculation of the integral in (4.2) gives

T_(—i 3 1 (a -+ 1)2
ys(®) = {a251n29 [_6-111 a—a -1 -

1 cos® 8
+o5 %3 (arctg V3 +ar0tg V3 )] cos?§ — /3 sin® 0 }

(4.3)
where a®=3 cot?6 — 1.
For angles § < /6, Eq. (4.2) gives, with accuracy up to 12%,
ys ) = L (4.4)

Thus, for a weakly radiating gas, the withdrawal naturally is independent of the parameter b, i.e., in-
dependent of the radiation, and increases with increasing angle 6.

For a strongly radiating gas with b > 1 an asymptotic calculation of the integral in (4.1) for angles
#<n/6 gives

Y41 n-b4 BT
ys @) = 2y n-3 cos2@ (4.5)
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The withdrawal of the shock wave in dimensional form
rs(0) — R = zRyg(9) (4.6)

where rg=rg(d) is the equation that describes the form of the shock wave. From Egs. (4.3), (4¢.5), and (4.6)
it follows that for a weakly radiating gas the withdrawal increases ~ R, and for a strongly radiating gas
~R(@+3)/(0+49)  anq decreases with increasing velocity V, . This is confirmed by an analysis of the numeri-
cal studies [5, 7]. It is interesting to note that Eqs. (4.4) and (4.5) imply the same dependence of the with-
drawal on angle § for strongly and weakly radiating gas, at least for angles § < 7/6. The ratio of the with-
drawal for § #0 to the withdrawal at the critical line § =0 in both limiting cases is independent of param-
eter b, which is related fo the radiation.

Equations (4.1) and (4.5) imply that the withdrawal of the shock wave decreases with increasing param-
eter of energy loss by radiation b. Such a decrease in withdrawal of the shock wave for a three-dlmen-
sional radiative loss was noted in the calculations of [7].

In conclusion the author thanks G. A. Tirskii and E. A. Gershbein for discussion and valuable remarks.

LITERATURE CITED

1. G. G. Chernyi, Gas Flow with Large Supersonic Velocity [in Russian], Fizmatgliz, Moscow (1959).
2. V. YV. Bogolepov and V. Ya. Neiland, "Convective heat exchange in a radiating gas,” Izv. Akad. Nauk
SSSR, Mekhan. Zhidk. i Gaza, No. 5 (1966).
3. R. F. Chisnell, "Radlation effects in the stagnation region," AIAA Journal, 4, No. 10 (1966).
4. K. H. Wilson and H. Hoshizaki, "Inviscid, nonadiabatic flow about blunt bodies," AIAA Journal, 3,
No. 1 (1965).
5.  Yu. G. El'kin, Hypersonic Flows of Nonviscous Selectively Radiating Gas About a Blunt Body [in
Russian], Tr. TsAGI, No. 1258 (1970).
6. V. P. Stulov and E. G. Shapiro, "Radlation of a shock layer for hypersonic flow of air past blunt
bodies," Izv. Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza, No. 1 (1970).
7. V. N. Fomin, "Hypersonic gas flow past blunt bodles taking account of radiation," Zh. Vychislit.
Matem. i Matem. Fiz., 6, No. 4 (1966).
Shih-I Pai, Radiation Gas Dynamics, Springer-Verlag {(1966). _
9. A. A. Kon'kov, V. Ya. Neiland, V. M. Nikolaev, and Yu. A. Plastinin, "Problems of radiant heat ex-
change inhypersonic aerodynamics,® Teplofiz. Vys. Temp., 7, No. 1 (1969).
10. L V. Avilova, L. M. Biberman, V. S. Vorob'ev, V. M. Zamal_in, G. A. Kobzev, A. N. Lagar'kov, A. Kh.
Mnatsakanyan, and G. £. Norman, Optical Properties of Hot Air [in Russian], Nauka, Moscow (1970).

0.2}
»

803



